
	
	
	
	
	
	
	
	
	
	

COMPSCI	3307A	-	Hue	Light	Group	Project	
Final	Deliverable:	Project	Retrospective	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Prepared	By:	 Prepared	For:	 Date	Submitted:	

Anthony	Tran	(atran94),	
Omar	Abdel-Qader	(oabdelqa),	
Usant	Kajendirarajah	(ukajendi),	
Zhengyang	Pan	(zpan45),	
Jacob	Fryer	(jfryer6)	

Professor	Mike	Katchabaw	
COMPSCI	3307A:	Object-Oriented	
Design	and	Analysis	
Western	University	

Friday,	December	08,	2017	



Project	Summary	
	

The	focus	of	the	project	was	creating	an	interface	for	connecting	to	and	interacting	with	
a	Philips	Hue	light	system	through	an	Internet	browser.	To	accomplish	this,	we	developed	an	
application	using	C++	and	the	Wt	framework	(version	3.3.8).		

	
Our	application	allows	a	user	to	register	an	account	and	log	in	with	their	appropriate	

credentials	to	access	their	Hue	bridges.	We	developed	a	simple	database	system	to	store,	
manage,	and	access	these	account	credentials	as	well	as	the	information	of	any	Hue	bridges	
associated	with	that	user.	This	provided	us	a	way	of	developing	persistence	of	user	data	after	
the	conclusion	of	a	session.	

	
Once	logged	in,	the	user	is	redirected	to	the	landing	page	of	our	application,	which	

provides	a	list	of	all	Hue	bridges	associated	with	that	user.	While	the	user	is	on	this	screen,	they	
can	add	and	connect	to	a	Hue	bridge,	or	select	a	previously-connected	bridge	to	edit	its	
properties.	Once	the	user	has	connected	to	a	bridge,	they	can	manage	all	the	lights	and	groups	
associated	with	that	particular	bridge.	All	this	functionality	involved	creating	classes	that	
modelled	each	component	for	the	purposes	of	our	application,	as	well	as	corresponding	front	
end	“manager”	classes	using	Wt	to	provide	a	user	interface	for	manipulating	the	settings	of	the	
associated	lights,	bridges,	and	groups.		

	
Lastly,	for	our	program	to	work	with	the	physical	lights,	we	implemented	calls	to	the	

Hue	API	in	our	program’s	front	end	which	update	both	the	local	objects	in	our	application	and	
the	physical	hardware.	For	testing,	we	used	the	Philips	Hue	emulator	developed	by	GitHub	user	
“SteveyO.”	We	used	Atlassian’s	Bitbucket	and	JIRA	software	for	version	control	and	project	
management,	respectively.	
	
Key	Accomplishments	
	
What	went	right?	
	

We	were	successful	in	creating	a	functional	database	that	persistently	stored	user	
account	information	(usernames,	a	hashed	version	of	the	user’s	password,	and	the	first	and	last	
name	of	the	user)	and	bridge	information.	Our	solution	initially	was	to	rely	on	a	single	text	file	
that	would	contain	all	registered	users,	but	it	quickly	proved	to	become	unwieldy	when	dealing	
with	a	variable	number	of	bridges	attached	to	a	given	user.	To	solve	this	problem,	we	turned	to	
the	Boost	C++	library	to	create	directories	for	each	individual	user,	with	separate	text	files	for	
user	information	and	bridge	information	to	be	serialized	before	the	session	was	terminated,	or	
the	user	signed	out.	

	
We	succeeded	in	creating	a	functional	(if	barebones)	user	interface	with	Wt.	The	

majority	of	the	base	functionality	required	by	the	project	is	in	place,	and	the	user	can	navigate	
around	the	application	in	a	way	that	is	fairly	intuitive	by	following	our	established	hierarchy.	



That	is,	a	user	has	a	vector	of	associated	bridges,	a	bridge	has	a	vector	of	associated	groups,	
and	so	on.	When	opening	the	application,	the	user	is	immediately	prompted	to	log	in	before	
any	action	can	be	taken,	and	all	other	pages	follow	a	logical	sequence	when	being	presented	to	
the	user.		
	

Ultimately,	although	we	struggled	in	several	areas	(see	also,	the	section	entitled	“What	
technical	challenges	did	you	face?”),	we	successfully	implemented	the	Hue	API	in	our	
application	and	were	able	to	provide	an	interface	for	the	user	to	manipulate	the	state,	hue,	
brightness,	and	saturation	of	the	lights.	
	
What	worked	well?	
	
	 In	storing	persistent	user	data,	our	team	did	a	good	job	of	securing	user	passwords	and	
usernames	using	a	hash	function	provided	in	the	standard	C++	library.	This	ensured	that	we	as	
developers	did	not	have	direct	access	to	user	passwords	(in	the	event	that	our	application’s	
database	were	to	be	hacked	in	a	real-world	scenario,	this	would	also	prevent	hackers	from	
accessing	confidential	user	data),	and	that	individual	user	files	could	not	be	searched	by	
username.	Instead,	the	users	can	be	searched	by	a	hashed	version	of	their	username,	which	
solves	the	issue	of	using	special	symbols	in	directory	path	names	(e.g.	the	@	symbol,	or	a	
period).		
	

We	created	an	efficient	database	solution	that	did	not	require	extensive	use	of	data	
structures	and	search	algorithms	to	save	and	search	for	user	information.	We	made	good	use	of	
file	streams	to	read	from	and	write	to	file,	and	designed	well-encapsulated	classes	for	each	of	
our	basic	objects	(Users,	Bridges,	Groups,	Lights,	etc).		
	
What	was	found	to	be	particularly	useful?	
	

We	found	the	third-party	plugin	Postman	to	be	quite	helpful	in	the	process	of	
developing	our	project.	Postman	provided	us	a	friendly	GUI	to	build	and	send	requests	to	the	
Hue	emulator.	With	its	help,	we	were	able	to	test	different	API	calls	to	see	what	parameters	
could	be	accepted	by	the	emulator	and	what	results	are	being	returned.	Because	there	is	a	
discrepancy	between	Philips’	official	Hue	API	guidelines	and	the	emulator’s	actual	behaviour	
due	to	emulator’s	limited	functionalities,	we	had	to	follow	the	guidelines	carefully	and	test	with	
the	emulator	from	time	to	time.	Postman	saved	us	time	and	trouble	during	this	process.	
	

Git	and	Jira	were	incredibly	useful	tools	in	the	development	of	this	project.	Using	Git	
ensured	that	all	group	members	could	work	remotely	from	any	system	and	have	all	up-to-date	
project	files.		Jira	allowed	us	to	storyboard	the	design	of	our	project	and	organize	tasks	to	be	
done.	Having	these	tools	available	made	it	so	every	team	member	was	up	to	date	with	the	
project	and	ultimately,	the	use	of	Git	and	Jira	helped	us	work	as	efficiently	as	possible	in	a	
group	dynamic.	

	



Additionally,	using	Boost	C++	libraries	was	a	huge	help.	Boost	libraries	contain	many	
tools	that	make	developing	in	C++	a	little	bit	more	accessible	and	familiar	to	those	of	us	who	
are	proficient	in	other	languages	like	Java.	This	library	made	string	manipulation	and	accessing	
the	filesystem	very	efficient	and	straightforward,	and	contributed	greatly	in	our	database	
design.	
	
What	design	decisions	contributed	to	the	success	of	the	project?	
	

Beginning	with	user	stories	and	a	UML	diagram	helped	to	direct	our	developmental	
efforts.		Creating	the	user	stories	gave	us	many	specific	functional	goals	to	work	towards	while	
making	the	UML	diagram	provided	for	us	an	overview	of	the	structure	of	our	project	and	
helped	to	break	it	down	into	smaller,	more	manageable	parts	to	develop.	

	
Early	on	in	the	project,	we	separated	development	into	two	discrete	folders:	one	for	the	

front	end	development,	and	one	for	the	database.	By	dividing	the	two,	we	were	able	to	work	
build	the	project	together	without	needing	to	shackle	our	progress	to	the	other	side	of	things.	
Development	of	the	database	was	not	contingent	on	progress	on	the	front	end,	which	allowed	
us	to	be	slightly	more	expedient.	
	
Key	Problem	Areas	
	
What	went	wrong?	
	

At	one	stage	in	the	project,	it	was	discovered	that	not	all	members	of	the	group	were	
using	the	same	version	of	the	Wt	framework.	This	was	a	large	issue	because	it	meant	that	those	
members	who	were	using	the	wrong	version	of	Wt	were	unable	to	build	the	project	in	order	to	
test	their	code.	Because	Wt’s	versions	3.3.8	and	4.0.0	are	considerably	different	in	terms	of	
programming	standardizations	(such	as	the	regular	use	of	the	“auto”	keyword,	the	
“make_unique”	function,	and	the	syntax	of	#include	statement	declarations),	it	was	essential	
to	revert	to	using	version	3.3.8	at	that	stage	in	the	project.	
	

Perhaps	unsurprisingly,	time	management	was	an	issue	in	our	group.	We	are	all	
students,	and	unfortunately	we	often	found	difficulty	in	budgeting	our	time	appropriately	
amidst	other	commitments	and	deadlines.	Allocating	appropriate	amounts	of	time	to	specific	
tasks	was	challenging.	We	focused	too	much	time	on	the	wrong	details.	When	we	wrote	out	the	
code	for	each	class,	we	realised	there	was	much	to	change	after	looking	at	the	HUE	API	as	we	
did	not	include	the	appropriate	attributes	or	structure	our	classes	to	reflect	what	the	HUE	Api	
needs.	
	

Most	of	our	group	members	have	past	experience	with	developing	programs	in	other	
languages,	such	as	Java	or	C.	It	was	challenging	for	the	group	members	to	learn	C++	while	not	
much	time	was	available	to	truly	experiment	and	understand	its	strengths	and	features.	It	may	
have	been	better	if	more	time	was	allotted,	or	a	familiar	language	was	chosen	(for	example,	



Java	or	Python).	On	top	of	general	C++	struggles,	our	group	found	that	the	Wt	Framework	was	
not	the	most	intuitive	web	development	kit	for	beginners	to	C++.	It	did	take	more	time	to	figure	
out	how	things	worked	with	Wt.		

	
In	designing	a	backend	solution	for	persistent	user	data,	a	lot	of	time	was	spent	trying	to	

come	up	with	a	technically	elegant	solution;	one	that	would	make	use	of	previous	knowledge	of	
data	structures,	efficient	search	algorithms	and	C++	containers.	In	hindsight,	it	is	clear	that	
much	of	this	time	would	have	been	better	spent	working	with	the	API	and	Wt	to	produce	a	
better	and	more	efficient	light-manipulation	system.	As	developers,	we	were	focused	on	the	
technical	aspects	of	the	solution	when	we	should	have	asked	ourselves	if	instead	of	a	perfect	
solution,	we	could	make	do	with	a	solution	that	was	good	enough.	Ultimately,	the	decision	was	
made	to	use	the	Boost	C++	library	to	put	the	burden	of	searching	for	and	storing	users	on	the	
OS.	While	it	is	possible	that	a	cleaner	database	solution	could	have	been	implemented,	this	was	
not	the	focus	of	the	software	project.	In	this	sense,	the	focus	shifted	away	from	features	that	
would	enhance	user	experience	to	ways	that	we	could	showcase	our	development	abilities.			
	
What	project	processes	didn't	work	well?	
	

Using	JIRA	and	Git	in	harmony	was	sometimes	an	afterthought.	Over	the	course	of	the	
project,	the	majority	of	our	group	found	ourselves	developing	on	a	single	“development”	
branch	in	our	Git	repository	and	warning	each	other	through	a	communal	chat	space	whenever	
we	were	pushing	an	update.	In	practice,	creating	a	new	branch	for	each	individual	user	story	
was	expected.	However,	we	generally	made	sure	to	update	our	user	stories	on	JIRA	whenever	
we	were	working	on	or	had	completed	a	given	task	once	the	story	was	in	an	acceptable	state	
and	passed	our	tests.	
	
What	technical	challenges	did	you	encounter?	
	

One	technical	hurdle	of	particular	note	that	our	group	needed	to	overcome	was	our	
initial	implementation	of	our	API	calls.	Our	first	pass	at	a	solution	was	to	use	a	“busy	wait”	
when	receiving	API	responses,	and	having	a	boolean	variable	be	set	in	the	class	when	the	API	
response	was	received.		

	
As	we	later	found	out,	Wt’s	framework	actually	handles	things	asynchronously.	

Consequently	our	application	would	be	stuck	waiting	until	our	supposed	“time	out”	condition	
was	met,	causing	the	boolean	variable	to	never	be	set.	The	API	response	would	only	be	
received	after	it	was	expected.	Figuring	out	what	was	happening	cost	us	around	a	day’s	worth	
of	development	time.	Development	was	stalled	while	trying	to	figure	out	why	the	API	would	
send	the	response,	but	the	program	would	never	be	able	to	use	the	data	due	to	our	control	
flow.	

	
Another	technical	challenge	we	encountered	was	in	managing	the	user	and	bridge	

information	in	the	database.	Initially,	the	database	was	designed	to	save	user	and	bridge	



information	concurrently.	So,	every	time	bridge	information	was	saved	as	a	result	of	an	add,	
update,	or	delete	operation,	user	information	was	also	re-written	to	file.	When	this	happened,	
a	user’s	hashed	password	would	be	rehashed,	meaning	that	a	user	would	not	be	able	to	log	in	a	
second	time	with	the	same	password.	Eventually,	user	and	bridge	information	were	split	into	
separate	files	so	that	user	information	would	only	be	stored	at	registration	and	would	never	be	
modified	after	that	point.	This	solution	worked	for	our	purposes,	since	we	were	operating	
under	the	assumption	that	a	user	would	not	need	to	change	their	username	or	password.		
	
What	design	decisions	made	it	more	difficult	to	succeed	in	your	project?	
	

We	encountered	a	self-inflicted	issue	in	our	code	related	to	our	implementation	of	the	
different	classes:	Bridge,	Group,	and	Lights.	Our	idea	was	to	handle	these	classes	in	a	hierarchy	
(as	mentioned	above),	so	that	all	lights	would	be	associated	with	groups,	all	groups	would	be	
associated	with	a	bridge,	and	all	bridges	associated	with	a	user.		We	had	some	difficulty	
mirroring	this	hierarchy	in	the	front	end.	
	

Another	issue	of	structure	came	up	as	we	came	down	to	the	wire.	Ultimately,	when	it	
came	time	to	connecting	our	back	end	database	with	the	front	end	user	interface,	we	
encountered	more	problems	than	expected.	In	theory,	the	backend	database	and	the	frontend	
GUI	should	have	been	linked	with	little	to	no	issue.	As	a	team,	we	communicated	constantly	
regarding	the	design	of	both	aspects	to	ensure	that	they	could	be	integrated	in	accordance	with	
our	overall	design	vision.	In	reality,	since	both	of	these	were	developed	and	tested	
independently,	integrating	them	proved	to	be	a	more	difficult	and	time-consuming	task	than	
we	had	anticipated.			
	
What	were	the	effects	/	impact	of	these	problem	areas?	
	

When	managing	an	individual	Group	or	Light,	to	construct	an	API	request	from	the	
corresponding	widget,	we	needed	to	pass	the	Bridge	down	the	hierarchy	of	widgets	in	order	to	
construct	a	URL	to	send	the	request	to	get	or	modify	the	target	Group	or	Light	object.	We	found	
this	to	be	a	problematic	design	pattern	that	could	potentially	make	the	application	slightly	less	
cohesive	as	a	piece	of	software.		

	
As	a	consequence	of	our	lack	of	foresight,	we	had	to	implement	our	database	as	a	global	

variable.	We	recognize	in	hindsight	that	there	are	other,	more	effective	design	patterns	(such	as	
a	singleton,	for	example)	that	could	have	been	used	to	initialize	our	database	on	every	session	
rather	than	as	an	unprotected	global	variable.	However,	due	to	time	constraints,	we	felt	we	had	
to	make	a	compromise	in	this	aspect	of	our	design	rather	than	take	the	time	to	rework	the	
implementation.			

	
Our	initial	thought	was	that	a	few	lines	of	code	added	to	the	front	end	should	make	the	

database	feature	fully	functional.	Upon	linking	and	testing	the	two	however,	we	realized	that	
the	result	of	all	the	independent	work	gave	rise	to	a	few	more	bugs	than	expected.	Ultimately,	



this	cost	us	more	time	trying	to	rework	the	database	feature	by	rewriting	some	code	and	
reformulating	the	logic	behind	how	the	system	would	work.	

	
Because	we	did	not	utilize	the	synergy	of	JIRA	and	Git	to	its	full	extent,	we	found	

ourselves	having	to	constantly	check	in	with	one	another	before	pushing	our	changes	to	the	
common	development	branch.	As	well,	it	made	it	difficult	to	keep	track	of	who	was	working	on	
what	task	at	what	time,	because	the	commit	logs	in	Bitbucket	were	often	insufficient	in	
delineating	the	progress	being	made	on	one	feature	or	another.	
	
What	corrective	actions	did	you	take	to	resolve	the	problems?	
	
	 The	solution	to	our	Git	issue	was	to	create	separate	development	branches	for	cleaning	
up	the	main	development	branch.	Although	it	was	not	as	effective	as	creating	individual	
branches	via	JIRA,	it	was	a	satisfactory	band-aid	solution	for	our	purposes	when	we	were	in	
“crunch	mode”	at	the	end	of	the	project.	
	
	 To	solve	our	database	problem,	we	had	to	spend	a	good	period	of	time	tracking	down	
some	bugs	(such	as	double-hashing	the	password,	or	adding	an	additional	bridge	to	the	user	as	
a	residual	piece	of	code	during	initial	testing	of	the	front	end	while	it	was	being	built	separately	
that	added	a	blank	bridge	for	testing).	A	mantra	that	we	adopted	was	“when	in	doubt,	‘cout’”.	
	
Lessons	Learned	
	

A	key	lesson	that	this	project	stresses	is	the	importance	of	project	management	in	the	
software	development	lifecycle	(SDLC).	An	important	takeaway	is	the	efficacy	of	project	
planning.	Tools	used	such	as	JIRA	allowed	for	efficient	project	management	and	progress	
diagnosis.	JIRA	would	allow	us	to	assign	levels	of	importance	to	specific	tasks,	and	this	allowed	
for	developer’s	to	direct	their	attention	to	functionality	of	the	highest	importance,	rather	than	
functionality	of	lower	importance.	
	

In	addition,	another	approach	we	would	take	differently	for	next	time	is	choosing	a	
different	software	development	paradigm.	For	this	project,	we	essentially	used	a	“waterfall	
method.”	Simply	speaking,	this	method	is	where	concepts	are	initiated,	designed,	constructed,	
tested,	and	maintained	largely	in	one	direction.	Due	to	there	being	not	much	time	spent	on	
revisiting	previous	stages	due	to	the	constraints	of	the	course,	this	software	development	
model	is	not	iterative	and	it	is	the	least	flexible	of	all	the	possible	paradigms	available.	
	

For	a	successive	attempt,	perhaps	it	would	be	better	to	use	Agile	development.	Agile	
development	allows	for	adaptive	planning,	evolutionary	development,	early	releases	and	
continuous	improvement.	Adaptive	planning	would	allow	us	to	revisit	requirements	and	adjust	
accordingly.	Evolutionary	development	and	early	releases	would	allow	us	to	release	a	simple	
and	functional	prototype	of	the	core	features	and	use	this	early	release	as	the	foundation	for	
subsequent	releases.	With	immediate	feedback	received	and	addressed,	this	would	allow	for	



continuous	improvement.	Agile	development	would	allow	for	prioritization	of	development	of	
core	functionality	that	is	important	to	the	respective	game	in	the	prototype	and	then	allow	us	
to	branch	out	to	functionality	of	lesser	importance	in	subsequent	releases.	It	would	have	been	
better	to	take	a	more	industry	relevant	approach	–	after	all,	it	is	prevalent	in	the	industry	for	a	
reason.	
	

All	in	all,	this	experience	stressed	the	importance	of	several	roles	that	come	together	to	
bring	an	idea	to	life	in	the	software	world.	A	project	manager,	quality	assurance	testers	and	
software	developers	are	all	equally	important	in	bringing	an	idea	to	life.	A	project	manager	is	
required	to	have	the	project	moving	along	adequately.	A	quality	assurance	tester	is	required	
because	often	times	developers	become	accustomed	to	(and	biased	toward)	their	creation	and	
are	unable	to	pick	out	bugs.	Agile	development	paradigm	would	have	allowed	for	testing	along	
the	way.	

	
We	realize	that	there	is	a	lot	more	that	can	be	done	with	Wt,	and	expanding	on	our	

experiences	with	our	hindsight	would	allow	us	to	refactor	our	code	and	complete	the	features	
that	were	left	unfinished.	It	would	be	a	good	learning	experience	for	us	to	return	to	this	project	
outside	of	the	context	of	this	course.	Prior	to	this	experience,	none	of	us	had	any	experience	
with	web	development	using	C++.	It	has	been	an	eye-opening	experience	having	worked	on	this	
project,	and	it	goes	to	show	the	vastness	of	the	field	of	Computer	Science.	This	project	
reiterated	the	importance	of	teamwork,	internal	structure,	and	communication	within	a	group	
setting.	If	we	were	to	attempt	such	an	undertaking	again	in	the	future,	enforcing	a	stricter	
schedule	with	internal	deadlines	in	the	style	of	an	Agile	sprint	would	be	essential.		

	
We	feel	that	it	would	be	interesting	to	work	on	a	project	like	this	again	in	the	future.	

However,	a	caveat	to	this	is	that	we	feel	we	would	rather	work	on	a	team	project	without	the	
added	burden	of	other	courses	competing	for	our	attention.	Coupled	with	a	less	condensed	
timeframe,	a	group	project	like	the	Hue	application	would	be	a	much	more	appealing	prospect.	


